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Overlapping of nonlinear resonances and the problem of quantum chaos

A. Ugulava, L. Chotorlishvili, and K. Nickoladze
Tbilisi State University, Department of Physics, Chavchavadze Avenue 3, 0128 Tbilisi, Georgia
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The motion of a nonlinearly oscillating particle under the influence of a periodic sequence of short impulses
is investigated. We analyze the Schro¨dinger equation for the universal Hamiltonian. It is shown that the
quantum criterion of overlapping of resonances is of the formlK>1, whereK is the classical coefficient of
stochasticity andl is the functional defined with the use of Mathieu functions. The area of the maximal values
of l is determined. The idea about the emerging of quantum chaos due to the adiabatic motion along the curves
of Mathieu characteristics at multiple passages through the points of branching is advanced.
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I. INTRODUCTION

The overlapping of nonlinear resonances is the criter
for the origin of dynamical stochasticity in classical Ham
tonian systems. When the conditions for this criterion ha
been realized it is possible to justify the transition from t
dynamic Hamilton description to the statistical one and
study the behavior of the system with the help of a statist
average. Such a description is as full as possible in this ra
and successfully substitutes for a dynamic description, wh
loses its sense due to strong local instability@1,2#. However,
in quantum mechanics the introduction of stochasticity
significantly difficult @3–8#. What can be considered as
quantum analog of dynamic stochasticity? What is a criter
for passing to quantum chaos? How can one quantize
system in a classical limit corresponding to the dynamic s
chasticity? These are only some of the problems of quan
chaos.

In the present work an attempt is made to investigate
aspects of a general problem of quantum chaos: the crite
for the overlapping of resonances on the basis of quan
mechanics and to study the singularities of wave function
the area, in which the classic mechanics assumes the
tence of dynamic stochasticity.

Let us assume that a nonlinearly oscillating particle~Fig.
1! is under the action of a variable field,

H~x,p!5Ho~x,p!1HNL~x!1«V~x,t !, ~1!

where

Ho~x!51/2~p2/m1vo
2mx2!,

HNL5gx31bx41•••,

«V~x,t !52~e/m!x f~ t !,

f ~ t !5 f oS~ t !cos~vt !, «V~x,t !5«VoxS~ t !cos~vt !,

«Vo52~e/m! f o ,

«!1. ~2!
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The Hamiltonian of such type has been investigated fo
long time is being with the purpose of studying a dynam
stochasticity both in classical@1# and in quantum system
@3,5,6#.

Here x and p are the coordinate and the impulse of t
particle,vo is the fundamental frequency,g and b are the
coefficients of the nonlinearity,m ande are the mass and th
charge of the particle,f o is the amplitude of the variable
field, S(t) is the periodic sequence of rectangular elect
magnetic impulses with the durationt and with the phase o
recurringT ~Figs. 2 and 3!. It is supposed that 1/v,1/vo!t
!T.

The fundamental component of pumping field at fr
quencyv5vo is able to carry out the linear resonance a
cause the increase ofx until the nonlinear terms proportiona
to x3 andx4 become significant in the potential~i.e., up to a
neighborhood ofxL , Fig. 1!. From this moment the nonlin
ear terms will gradually begin to detune the linear resona
~at v5vo), which will reduce the resonance growth ofx.
Then the remaining harmonics of the pumping spectru
concentrated in sumS(t), will begin to play a role. Their
role will be significant in reaching higher excitation (x
.xL), if criteria of the overlapping of resonances is fulfille

II. UNIVERSAL HAMILTONIAN:
CLASSICAL CONSIDERATION

In this section we shall review the well-known resu
obtained in the theory of stochasticity for the nonlinea

FIG. 1. Continuous line corresponds to the anharmonic poten
UNL(x)5mvo

2x2/21gx31bx4. The dashed line corresponds to th
harmonic potentialUL(x)5mvo

2x2/2. They coincide up to point
xL .
©2003 The American Physical Society16-1
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oscillating classical systems. After passing in Hamilton
~1! to the variables action-angle with the help of transform
tion x5A2I /mvocosu,p52A2Ivom sinu, and averaging
Eq. ~1! with respect to the fast phaseu, we obtain

H5Ho
NL1«V~ I ! . . . ,

Ho
NL5Ho1HNL ,

Ho5Ivo ,HNL53pb~ I /mvo!2,

«V~x,t !5«/2V~ I !cos~w!S~ t ![«V~ I ,w,t !,

V~ I !5VoA2I /mvo, ~3!

wherew5u2vt is the slow phase.
Let us notice that we have unitedHNL with Ho in the

unperturbed HamiltonianHo
NL . In what follows, nonlinear

terms are not assumed small and the application for them
the perturbation theory is not possible. The relevant se
canonical equation looks like

İ 52«
]V~ I ,w,t !

]f
,

ẇ5v~ I !1«]V~ I ,w,t !/]I ,

where

v~ I !5vo2v1v
NL

~ I !,v
NL

56pbI /~m2vo
2!, ~4!

«V~ I ,w,t !51/2
t

T
V~ I !cosw (

21/t

1/t

coskVt. ~5!

The phasew, slow as compared tou, remains fast in
comparison with the velocity of the actionI variation. The

FIG. 2. Periodic series of rectangular pulses.t is the pulse
length andT is the recurring period.

FIG. 3. Pumping spectrumf (t) consists of many harmonics
multiples to theV52p/T, enveloping frequency range fromvo

11/t up to vo1/t.
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velocity of the variation ofw contains information about the
nonlinear character of motion. In particular, the depende
of ẇ on I means the presence of nonlinearity in the oscill
ing system. Suppose that for some values ofI n the resonance
betweenv(I ) and some component from the polychroma
pumping spectrum~5! @i.e., v(I n)'nV] is carried out. Then
forming a slow phasean'w2nVt, averaging expression
~5! with respect to the fastw, and taking into account Eq
~5!, we get

«V~ I ,w,t !51/4
t

T
V~ I !cosan . ~6!

Substituting Eq.~6! in Eq. ~4!, we have

İ n5U~ I !sinan ,

ȧn5v~ I n!2nV1dU~ I !/dI cosan , ~7!

where

U~ I !51/4
t

T
V~ I !. ~8!

Equations~7! describe the nonlinear resonance. As o
posed to the linear resonance at which unbounded lin
growth of an amplitude is valid~in our case actionI or de-
viation x), in the case of the nonlinear resonance~as was
already mentioned!, there are so-called ‘‘phase oscillations
i.e., oscillations of the phasean and the amplitudeI n .

Let us introduce the deviation of the action,DI n5I
2I n , DI !I n from the resonance value. Then it is possible
demonstrate that the Hamiltonian

H̃5v8~DI !2/21U~ I n!cosan , ~9!

where v85(dv/dI) I 5I n
, produces the set of equations

Eq. ~7! type. Really, from the equilibrium conditions,ȧ5 İ
50, one can obtain

v~ I n!2nV1«/2dU~ I n!/dI50,

v~ I n!5v~ I n!1v8DI n . ~10!

If the condition of moderate nonlinearity is just«!m
!1/«, where

m5I n /v~ I n!S dv

dI D
I 5I n

~11!

is the factor of nonlinearity, then with the help of Eqs.~7!–
~11!, we get

D İ n5U~ I n!sinan . ~12!

It is possible to obtain the equationȧn5v8DI n for phase
oscillations from set~12!,

än2vph
2 sinan50, ~13!
6-2
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wherevph5Av8U is the frequency of phase oscillations.
Let us notice that Hamiltonian~9! is the Hamiltonian of

the mathematical pendulum, where 1/v8 plays the role of
mass andU(I n)cosan plays the role of potential energy. Tak
ing into account that in the classical mechanics the prob
of the pendulum can be solved exactly, we reduced an in
problem to the solved one.

Variation of the action with the help of Eq.~9! and ~12!
can be presented in the form

DI 15A~E1U !/v8dn@v8A~E1U !/v8t;k#, E.U
~14!

@with the period equal to 2K(k)],

DI 25A~E1U !/v8cn@v8A~E1U !/v8t;1/k#, E,U
~15!

@with the period equal to 4K(1/k)], whereE is the energy of
the particle,cn and dn are Jacobian elliptic functions: th
elliptic cosine and delta of amplitude;K(k) is the second
order complete elliptic integral,k5A2U/(E1U) is the
module of elliptic integrals.DI 1 andDI 2 are deviations of
the action up and below the separatrix accordingly. FoE
5U(or k→1) these two solutions are sewed together a
take the form of an instanton

DI 1→DI 2→
A2U/v8

c\~A2Uv8t !
. ~16!

Averaging the action deviation with respect to half perio
we get the following equations:

DI 15A~E1U !/v8
1

K~k!
E

0

4K(k)

dn~t,k!dt

5
pAE1U/v8

2K~k!
, E.U, ~17!

DI 25A~E1U !/v8
1

2K~1/k!
E

ao

2K(1/k)

cn~kt,1/k!dt

5
pAU/2v8

K~1/k!
, E,U, ~18!

ao5arccos(2E/U).
At E'U,

DI 2'DI 1'DI 5pAU/2
1

ln 4A4U/~U2E!
. ~19!

Action variation dependence on the ratioE/U is presented
in Fig. 4.

According to Fig. 4, the magnitude ofDI 2 sharply de-
creases as a separatrix is approached.

If during the phase oscillationDI n takes enough majo
values~such asv8DI n>V), the resonance conditionv(I n)
'nV breaks, but other resonance condition is attuned:
02621
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v~ I n
o1DI n!'~n11!V. ~20!

Just at the jump to the other resonance condition ther
an abruptness, which results in a stochastic wandering
spectral harmonics~6!. It is the essence of overlapping o
resonances, which serves as the criterion of the stochast
emerging in the nonlinearly oscillating system. Expendi
v(I ) into series with respect toDI , and making an estima
tion, DI'AU/v8, on the basis of Eqs.~17! and ~18!, it is
possible to present condition~20! in the form Av8U'V.
Thus, in the case of overlapping of resonances the ph
oscillation frequency2vph coincides by an order of magni
tude with the frequency distance between harmonics in
pumping spectrum. Usually, criterion of the dynamic s
chasticity, equivalent to the overlapping of resonances
written by introducing the stochasticity coefficient

K'Av8U/V.1. ~21!

In the range of statistical motion the nonlinear oscillati
system is described with the help of distribution functi
r(t), for which it is possible to obtain the diffusion equatio
@1#

]r

]t
5D

]2r~ I ,t !

]I 2
, ~22!

whereD5 1
2 U2(I )T is a diffusion coefficient. Now from Eq

~22! with the help ofr(I ,t) it is easy to getĪ 5 Ī 01Dt,
where average is understood as a statistical average. D
sion growth of the action reduces the growth ofA^x2& in the
range ofx.xL . As an energy of the particle, located in
hole, isEo5Ivo , then in the range of stochastic dynami
E(t)5Eo1voADt and ‘‘heating’’ of the particle takes place
The above-mentioned reasonings are proved by nume
calculations~Fig. 5!.

The first numerical experiments for stochastic ‘‘heatin
of a nonlinear oscillator were carried out long time ago, s
Ref. @1#.

FIG. 4. DI 2 as a function of ratioE/U in the classical case.
6-3
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The condition of resonance overlapping has visual in
pretation on a phase plane.

The mathematical pendulum, in association with init
conditions, can make two types of motion: oscillatory a
rotary. They are separated by a separatrix on the phase
gram. The overlapping of resonances on the phase plane
responds to a touch of separatrixes~Fig. 6!, if the width of
the separatrix is estimated asv8DI n'Av8U ~in frequency
units!.

The dynamic stochasticity usually originates in a narr
layer near a separatrix@1,2#. Therefore, at quantum review
ing we shall be especially interested in quantum propertie
the system near the separatrix. In other words, we shal
interested in a wave function of isolated nonlinear resona
in the absence of overlapping. The analysis of these pro
ties can explain the essence of a quantum chaos.

In conclusion, we shall remark that the condition of ov
lapping of resonances depends on the actionDI n as the so-
lution of the equations generated by the universal Ham
tonian. Therefore, at quantum reviewing, for establishing
criterion of overlapping of resonances it is enough in E

FIG. 5. Diffusion growth of the action obtained at the values
parametersf o50.5,vo520,xl51,V50.2,T510,t51 and the sto-
chasticity factorK5(t/T) f ov8T'3.

FIG. 6. Phase trajectories of the mathematical pendulum n
the two resonances.
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~20! under DI n to understand the relevant magnitude o
tained from the quantum equations generated by Hamilton
~9!.

Apart from the quantum estimation forDI , we shall also
be interested in quantum dynamics near the separatrixE
'U) as the basis of directed random motion in on
dimensional nonlinear systems.

III. QUANTUM-MECHANICAL CONSIDERATION

The quantum-mechanical consideration of isolated n
linear resonance, as well as overlapping of two resonan
was presented in Refs.@3,5,6#. In Ref. @5# it was specified
that the Schro¨dinger equation for a nonlinear isolated res
nance can be reduced to the Mathieu’s equation, and if
condition of the resonances overlapping is fulfilled the c
relations drop@6# ~numerical computational methods!. We, in
this section, are interested essentially in quantum-mechan
characteristics of the problem—wave function and ene
spectrum. We shall investigate, in a quantum case, the un
dictability of hit of a system in any quantum state~analog of
a stochastic stratum near a separatrix in classical mechan!.

The universal Hamiltonian~9! depends on the basic pa
rameter of nonlinear oscillations,v8. At quantum reviewing
corresponding to the universal Hamiltonian, Schro¨dinger
equation will also depend onv8. So we came to the
quantum-mechanical consideration of the nonline
oscillating system within the framework of the approxim
tion made in Sec. I.

The Schro¨dinger equation relevant to Hamiltonian~9!, is

d2C

da2
1

2

x
@E2U cosa#C50, ~23!

wherex5v8\2.
Let us clarify the essence of the parameterx. The value

v8\ is the quantum~the minimal portion! of the frequency
shift stipulated by nonlinearity~i.e., the frequency quantum
of nonlinearity!. Hence, valuex5v8\2 is the energy quan-
tum of nonlinearity.

Equation~23! is the Mathieu’s equation, which we sha
analyze below. For now we want to get quasiclassical w
functions relevant to an approximationL5U/x@1 of the
Schrödinger equation. It is known that quasiclassical wa
function is

C~a!5
c

ADI
expS i /\E

0

a

DI ~a!da D , ~24!

where c is the normalizing constant andDI can be found
from the integral of the energy,

DI 5A2/v8~E1U cosa!. ~25!

Substituting Eq.~24! in Eq. ~23!, after integration we get

C1~a!5
1

2

~E1U !1/4

AK~k!

exp@2iA~E1U !/xE~a/2,k!#

~E1U cosa!1/4
, ~26!

f

ar
6-4
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E.U, 0<a<p; C2~a!51/A2
~U/2!

AK~1/k!

Ux

~E1U cosa!1/4
, ~27!

0,E,U, 0<a<ao g5arcsinAU~12cosa!

U1E
, ao5arccos~2E/U !, ~28!
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where F(•••) is the elliptic integral of the first kind,
E(•••) is the elliptic integral of the second kind, an
K(•••) is the first kind complete elliptic integral.

Let us note that, as in the considered caseL@1, quasi-
classical wave functions~26! and~27! oscillate fast with the
variation ofa, having peaks at turning points6ao . It is a
common property of wave functions in a quasiclassical
proximation.

The wave functions corresponding to the separatrix can
obtained in the limitE→U,

C2~a!5C1~a!5Cs~a!

51/2A2
1

ln 4A U

uE2Uu

exp~ i2A2L sina/2!

~11cosa!1/4
.

~29!

According to expression~29! for a wave function near the
separatrix the frequency of fast oscillations practically do
not vary. The turning pointsao^p approach6p and the
peaks of fast oscillations become negligibly low. This is co
nected with the logaritmically diverging factor in Eq.~29!.
With the help of Eq.~29! it is easy to find an equation fo
nodal points of separatrix wave function,CS(a)50,

2A2U/x sin
an

2
5p/212pn, n51,2, . . . . ~30!

Differentiating relation~24!, it is possible to calculate the
density of nodal points

dn

dan
5

1

2p
A2U

x
cos

an

2
. ~31!

The high density of nodal points is provided by the ma
parameter of quasiclassical consideration (2U/x)1/2, which
is suppressed by the zeroes of the factor cosan/2 in the points
an56p ~see Fig. 7!. Another important characteristic of th
quantum state near the separatrix is the density of en
levels. Bohr-Zommerfeld quantization condition looks like

I 5 R DI ~a!da5n\. ~32!

Taking into account Eq.~25!, we get
02621
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I 5A2/v8E AE1U cosada

5
2

AUx
@~E2U !K~1/k!12UE~1/k!#5n. ~33!

With the help of Eq.~33! for the density of energy levels
it is possible to obtain

dn

dE
5

1

AUx
K~1/k!. ~34!

In the limit E→U for the energy level density,dn/dE,
we get

S dn

dED
s

5
1

AxU
ln 4A 2U

uE2Uu
. ~35!

As can be seen from Eq.~35!, the level densities are loga
rithmic divergent near the separatrix.

Now let us try to evaluate the quasiclassical condition
the overlapping of resonances. For this purpose it is ne
sary to calculate average valuesDI for a half cycle of motion
both above and below the separatrixes. Taking into acco
Eqs.~25!–~27!, we obtain

^DI &15E
2p

p

uC1~a!u2DI ~a!da5p/2AE1U

x

\

K~k!
,

~36!

FIG. 7. Quasiclassical wave function below the separatrixE
50.9U,L;100.
6-5
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^DI &25E
2ao

ao
uC2~a!u2DI ~a!da5AU

2x

ao\

K~1/k!
~37!

and near the separatrixes,E'U,

^DI &1'^DI &2'^DI &S5pAU/2x
\

ln 4A 2U

uE2Uu

,

~38!

where^•••&6 denotes averaging with the help of wave fun
tions ~26!, ~27!, and~29!. Let us note that

^DI &2/\5~U/2x!1/2@ao /K~1/k!#'L1/2@1

is in good agreement with a quasiclassical condition of m
tion. Because of the coincidence of classical valuesDI 6 with
the quasiclassical ones^DI &6 it is natural that conditions o
overlapping resonances will also coincide,v8(1)DI 2

5v8^DI &25V. Hence, one can conclude that, under qua
classical conditionsL@1 and the condition of overlappin
resonances, the stochastic ‘‘heating’’ of electron is under
conditions given in Sec. I and high excitations can be
tained~see classical case, Fig. 5!. Quasiclassical expression
~36!, ~37! by the form coincide with the similar classica
expressions~17!, ~18!. But as opposed to the classical fo
mulas, in quasiclassical expressions theEn energy spectrum
of quasiclassical levels should be understood underE. With
the help of Eqs.~33! and~34! it is possible to determine th
number of levels entrapped in a nonlinear resonance:

Dn5
dn

dE
DE, ~39!

where

DE5\v8^DI &2. ~40!

Dn is the important characteristics of an isolated nonlin
resonance. Using Eqs.~34!, ~37!, ~39!, and~40! it is easy to
show that the number of levels entrapped in nonlinear re
nance isDn.ao/2. According to Eqs.~35!, ~38!, ~39!, and
~40! it is also easy to show that near the separatrix ther
Dns.p/2. While according to Eqs.~34! and~35! the density
of levels increases logarithmically as the separatrix is
proached, the number of levelsDn entrapped in resonance
not increased. This is caused by the sharp fall of the ac
variation nearU.E ~see Fig. 4!. Thus the number of en
trapped levels in a nonlinear resonance is not great and
mains the same when approaching the separatrix. Major
uesDn, as was shown in Ref.@6# by means of numerica
methods, can be reached in case of overlapping resona
~Fig. 8!.

Let us analyze Schro¨dinger equation~23!. We assume tha
U and x are the values of one order and that is why t
quasiclassical approximation cannot be used.

In the limit caseE@U it is possible to use limiting (U
→0) formulas for the Mathieu’s functions@9#:
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C0~a!5ceo~a!51/A2,

Cn~a!5cen~a!5cosna,

Cn~a!5sen~a!5sinna, n51,2,3, . . . . ~41!

These functions should satisfy the equation

d2C

da2
1

2E

x
C50, ~42!

which follows from Eq. ~23! at U→0. The equation de-
scribes harmonic oscillations with the frequencyA2E/x. To
reduce it in correspondence with the solution~41!, it is nec-
essary to require

A2E

x
5n or En51/2xn2, ~43!

where n51,2,3, . . . . The last relation leads to the energ
spectrum quadratically depending on the quantum numb

It is possible to use the relations obtained with the help
an averaged universal Hamiltonian for calculation ofDI in
the zero order with respect to theU/E,

^~DI !2&n5
2

v8
En . ~44!

Then, taking into account Eq.~43!, we get

^DI &n'A^~DI !2&n5n\. ~45!

It is possible to obtain the condition of the overlapping
resonances for a frequency shift, caused by the variatio
an action,

dv'v8^DI &n5v8n\>V. ~46!

Using Eq. ~46! the condition of resonance overlappin
could be written asdv'v8n\>V. It is significantly diffi-

FIG. 8. Quasiclassical wave function near the separat
E;U.
6-6
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OVERLAPPING OF NONLINEAR RESONANCES AND THE . . . PHYSICAL REVIEW E 68, 026216 ~2003!
cult to fulfill this condition as compared with a similar one
quasiclassical case, because it requires excessively smaV.

In the opposite limit caseE!U we have condition of
overlapping the resonances, which is also difficult to ful
and for this reason we do not present a detailed analysis

It is well known that eigenvalues of the Mathieu’s equ
tion can be defined by means of the Ince-Strutt diagra
~Fig. 9! constructed for the first time to study a parametri
resonance@9#. As follows from these diagrams, each valueU
corresponds to a set of eigenvaluesEn and periodical wave
functionscen(a),sen(a). Curves in Fig. 9 corresponding t
the realized quantum states are known as Mathieu chara
istics. A essential feature of Mathieu characteristics is
presence of points of branching in the neighborhood of a
U5E, corresponding to the classical separatrix. Movi
along Mathieu characteristics from left to right in points
branching being at the left of separatrix line disappears t
fold degeneration. So through the passing of separatrix
U5E and reaching the point of branching, to the right o
separatrix wave functions merge again but nowsen and
cen21. The emergence of such a picture~point of branching
from two sides of the separatrix! at the passage to quantu
consideration is a principal characteristic describing a qu
tum system near classical separatrix. One can observe
appearance of unpredictability of occupied quantum lev
with the help of branching points located on both sides o
separatrix. Let us suppose that one of the system parame
for example, the amplitude of variable fieldU varies adia-
batically @U→U1e cos(kt), e!1, k frequency of slow mo-
tion#. In common problems of quantum mechanics it is b
lieved that the distance between levels in an ene
distribution, depending on exterior parameters, varies s
chronously with an adiabatically varying parameter, n
changing in this case a quantum state. The situation
changed radically, if a quantum-mechanical problem of
definition of energy distribution and eigenfunctions is r
duced to the analysis of diagrams of the Ince-Strutt type
slow moving along the curves of Mathieu characteristics d
to the adiabatic change of the amplitude of variable fie
after multiple passages through the branching points i
impossible to determine exactly in which Mathieu charact

FIG. 9. Dependence of the eigenvalueE on U for different
Mathieu’s functions. Dashed line corresponds to the separa
Symbols denotes branching points above the separatrix and s
bol d denotes branching points below the separatrix.
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istic ~in which quantum state! the system can be found. On
can consider this appearance as quantum analog of forma
of a stochastic layer of motion in the area of classical se
ratrix.

Let us move to the analysis of overlapping criterion in
quantum case. Taking into account the quantum virial th
rem, connecting average kinetic energyT with the average
potential energyU,

2^T&5 K a
dU

da L , ~47!

for variation of actionDI with the help of Eq.~44!, we
obtain

^DI &'A~DI !2)5l~L!Av8U,

where

l~L!5A2E
0

p

cen
2~a,L!a sinada ~48!

and L5U/x. The condition of overlapping of resonance
takes the form

dv5v8^DI &'l~L!Av8U>V ~49!

FIG. 10. Parameterl as a function ofL for different Mathieu’s
functionsce4ce6.

FIG. 11. EigenvalueE as a function ofUo for Mathieu’s func-
tions ce4ce6. Dashed line corresponds to the separatrix.
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UGULAVA, CHOTORLISHVILI, AND NICKOLADZE PHYSICAL REVIEW E 68, 026216 ~2003!
or

l~L!K>1. ~50!

Comparing the quantum criterion~50! with the classical
~21!, one can conclude that in quantum case there is an
ditional quantum factorl(L).

As can be seen from Eq.~50!, the condition of resonance
overlapping in the quantum case is determined by the m
nitude of L. This condition is reduced to that how man
levels of nonlinearity of energyx can be located inU.

Thus, at quantum reviewing, the additional factorl(L)
appears in the overlapping criterion. The physical sense
l(L) can be clarified. If the classic criteria of the resonan
overlappingAv8U'V is fulfilled then, according to Eq
~50!, the magnitude ofl(L) determines the conditions o
-

s

02621
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g-

of
s

weakening@l(L),1# or amplifying @l(L).1# the reso-
nances overlapping criterion, in comparison with the clas
cal one. Differently,l(L).1 means that the condition o
overlapping of resonances more easily can be fulfilled i
quantum case.

The data of numerical calculations for the magnitu
l(L) are given in Fig. 10. As is visible from Fig. 10
l(L).1, i.e., the resonance overlapping criterion amplifi
in the quantum case. For high values ofL ~the quasiclassica
case!, l(L) should tend to unity. In Fig. 11 the eigenvalu
of an energyE/x as functions ofUo are presented for state
described by the functionsce4(a,U) and ce6(a,U). From
Figs. 10 and 11 it is easy to see that the maximum value
l(L) corresponds to (]E/]U)n50. Thus, in the quantum
case the area lying below classical separatrix correspond
the area of the maximum stochasticity.
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